An alternative view of enzyme catalysis*,**

نویسنده

  • Fredric M. Menger
چکیده

This paper begins with a brief review of theories and concepts that have influenced today’s view of enzyme catalysis: transition-state stabilization, entropy, orbital steering, proximity, and intramolecularity. The discussion then launches into the “spatiotemporal” model of enzyme catalysis in which fast intramolecular and enzymatic rates are ascribed to short distances that are imposed rigidly upon the reacting entities. An equation relating rate and distance is set forth, as are experimental and computational data supporting this relationship. Finally, enzyme systems themselves are analyzed in terms of the distance parameter and the so-called “split-site” model in which ground-state geometries play a crucial role. Among the many surprising conclusions is a transition-state stabilization by noncovalent forces (e.g., hydrogen-bonding) that are positioned far away from the actual transition-state chemistry. The model also confronts and dismisses the claim in classical enzymology that the ubiquitous enzyme-substrate complex is either inconsequential or inhibitory to the overall reaction rate.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kinetic Isotope Effects as Probes for Hydrogen Tunneling, Coupled Motion and Dynamics Contributions to Enzyme Catalysis

Since the early days of enzymology attempts have been made to deconvolute the various contributions of physical phenomena to enzyme catalysis. Here we present experimental and theoretical studies that examine the possible role of hydrogen tunneling, coupled motion, and enzyme dynamics in catalysis. In this review, we first introduce basic concepts of enzyme catalysis from a physical chemistry p...

متن کامل

Enzymes: An integrated view of structure, dynamics and function

Microbes utilize enzymes to perform a variety of functions. Enzymes are biocatalysts working as highly efficient machines at the molecular level. In the past, enzymes have been viewed as static entities and their function has been explained on the basis of direct structural interactions between the enzyme and the substrate. A variety of experimental and computational techniques, however, contin...

متن کامل

Crawling Out of the RNA World

Comparison of phylogenetically diverse ribonucleoprotein (RNP) enzymes and information about their biochemistry have stimulated hypotheses about their evolution. Instead of the canonical view, in which catalysis proceeds from ribozyme to RNP enzyme to protein enzyme, RNP enzymes and proteins are seen to share contemporary catalysis. Furthermore, the RNA components of RNP enzymes show no evidenc...

متن کامل

Enzymatic catalysis of formation of Z-aspartame in ionic liquid - An alternative to enzymatic catalysis in organic solvents.

We present the first report of enzymatic catalysis in an ionic liquid. The virtually nonexistent vapor pressure makes ionic liquids an exciting new alternative for enzyme-catalyzed syntheses in environmentally friendly environments. Z-aspartame was synthesized in a thermolysin-catalyzed reaction of carbobenzoxy-L-aspartate and L-phenylalanine methyl ester hydrochloride in 1-butyl-3-methylimidaz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005